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SUMMARY

The extensive physiological influence of transmis-
sion through the CB2 cannabinoid receptor makes
this G protein-coupled receptor (GPCR) a promising
therapeutic target for treating neuropathic pain,
inflammation, and immune disorders. However, there
is little direct structural information pertaining to
either GPCR or CB2-receptor ligand recognition
and activation. The present work helps characterize
experimentally the ligand-binding interactions of the
human CB2 (hCB2) receptor. This study illustrates
how our overall experimental approach, ‘‘ligand-
assisted protein structure’’ (LAPS), affords direct
determination of the requirements for ligand binding
to the hCB2 receptor and discrimination among the
binding motifs for ligands that activate therapeuti-
cally relevant GPCRs.

INTRODUCTION

Some 30% of marketed drugs are small-molecule ligands of G

protein coupled receptors (GPCRs), the most prevalent integral

membrane proteins (Lagerström and Schiöth, 2008). Two

GPCRs, the principal cannabinoid (CB) receptors CB1 and

CB2, are critical components of the endogenous CB (endocan-

nabinoid) signaling system (Vemuri et al., 2008). Activation of

CB receptors elicits the dissociation of Gai proteins and a conse-

quent decrease in intracellular adenylyl cyclase activity (Rhee

et al., 1998). CB1 or CB2 receptor transmission can also stimu-

late mitogen-activated protein kinase (Bouaboula et al., 1996),

and the CB1 receptor directly modulates L-, N-, Q-, and

P-type calcium channels (Gebremedhin et al., 1999; Mackie

et al., 1995; Pan et al., 1996). The wide-ranging physiological

and regulatory effects of endocannabinoid signaling place great

interest on targeting CB1 and CB2 receptors for therapeutic

gain. Structurally diverse CB1- or CB2-receptor ligands can

modulate endocannabinoid signaling (Raitio et al., 2005; Vemuri

et al., 2008). The virtual absence of CB2 receptors in the central

nervous system limits the potential of selective CB2-receptor

agonists/antagonists to elicit (CB1-mediated) psychoactive
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effects (Malan et al., 2003) and lends particular appeal to acti-

vating ligands selective for the CB2 receptor as potential

anti-inflammatory, anti-nociceptive, and neuroprotective drugs

(Marriott and Huffmann, 2008). CB1 and CB2 receptors share

only 44% overall identity at the level of their amino acid residues,

increasing to 68% shared identity within their transmembrane

domains (Munro et al., 1993). Despite the limited homology be-

tween these two CB-receptor subtypes, receptor discrimination

represents an ongoing concern in the design and therapeutic

application of CB-receptor ligands (Marriott and Huffmann,

2008; Vemuri et al., 2008). Nonetheless, the selectivity displayed

by at least some cannabinergic compounds for either the CB1

or CB2 receptor (Jagerovic et al., 2008; Marriott and Huff-

mann, 2008) suggests that ligand-induced activation of each

CB receptor subtype might occur through a distinct ligand-bind-

ing motif.

Largely because of inherent difficulties in isolating the requisite

quantities of purified GPCRs for analysis by X-ray crystallogra-

phy and nuclear magnetic resonance spectroscopy, there is

a paucity of direct, experimentally derived data on GPCR struc-

ture and ligand recognition. Notwithstanding descriptions of the

crystal structures of bovine rhodopsin (Rho) (Palczewski et al.,

2000), an engineered, human b2-adrenergic receptor (Cherezov

et al., 2007), the ligand-free opsin receptor (Park et al., 2008), and

the b1-adrenergic receptor-cyanopindolol complex (Warne et al.,

2008), the conformational plasticity of GPCRs and their in-

completely understood activation dynamics further complicate

GPCR structural elucidation. According to the predominant,

extended ternary-complex model, GPCRs exist in an equilibrium

between inactive (R) and activated (R*) states. Depending on

how they affect the interstate equilibrium, ligands are classified

as agonists, neutral antagonists, or inverse agonists, (De-Lean

et al., 1980). However, this paradigm inadequately explains the

complex behavior of GPCRs, which likely exist in multiple con-

formational states between R and R* (Lagerström and Schiöth,

2008; Samama et al., 1993). The limited direct information on

GPCR ligand-interaction sites mandates further experimentation

to establish more precisely the ligand-binding and pharmaco-

phore requirements of these CB receptors and refine CB1- and

CB2-receptor structural models. The three-dimensional Rho

structure has been used to formulate CB-receptor homology

models, which remain speculative because of the attendant

extrapolations used (Poso and Huffman, 2008; Reggio, 2006).
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Likewise, although profiling of cannabinergic ligand binding to

CB1- and CB2-receptor mutants has helped identify amino

acid residues influencing ligand recognition (Picone et al.,

2005; Tao et al., 1999), such studies cannot offer direct demon-

stration of discrete receptor-ligand interactions at the amino-

acid level (Peracchi, 2001; Admiraal et al., 2001).

Work in this laboratory has sought to define the structural

aspects of ligand recognition by endocannabinoid-system

enzymes and CB receptors by utilizing a direct experimental

approach we have termed ‘‘ligand-assisted protein structure’’

(LAPS) (Zvonok et al., 2008). This approach exploits the ability

of CB receptors to recognize several chemical classes of

ligands, including prototypic tricyclic CBs such as the phytocan-

nabinoid (-)-D9-tetrahydrocannabinol (D9-THC); nonclassical

synthetic bicyclic terpenoids (e.g., CP55940); the aminoalkylin-

dole WIN55212-2; the endocannabinoid anandamide (AEA);

and the biarylpyrazoles SR141716A (CB1-receptor antagonist)

and SR144528 (CB2-receptor antagonist) (Palmer et al., 2002;

Figure 1. Chemical Structures of Cannabi-

nergic Ligands and Effect of AM-841 on WT

and Mutant hCB2 Receptor Ligand Binding

(A) Chemical structures of representative cannabi-

nergic ligands used in this study.

(B and C) Preincubation with AM-841 eliminates

[3H]-CP55940 binding to the WT hCB2

receptor and the hCB2 C7.38(284)S and hCB2

C7.42(288)S mutant receptors, but not to the

hCB2 C6.47(257)A or hCB2 C6.47(257)S mutant

receptors. Membranes prepared from HEK293

cells expressing either the WT or a mutant hCB2

receptor were preincubated with 9 nM (six-fold

the Ki) AM-841 for 1hr at 30�C and then extensively

washed to remove unbound, noncovalently asso-

ciated ligand. The washed membranes were

subjected to a saturation binding assay using

[3H]-CP55940 as the radioligand. (B) Saturation-

binding curves using [3H]-CP55940 for WT and

mutant hCB2 receptors preincubated with

AM-841 as described above and ‘‘control’’

membranes processed in parallel, but without

prior exposure to AM-841. Data represent the

means ± SEM of at least 2 independent experi-

ments performed in duplicate. (C) Comparison

of the difference in Bmax values of each hCB2

receptor with or without preincubation with

AM-841. Data shown represent the means ±

SEM of at least 2 independent experiments per-

formed in duplicate.

Rhee and Kim, 2002) (Figure 1A). Among

the many unique cannabinergic com-

pounds we have generated are ligands

with exceptionally high affinity and selec-

tivity for either the CB1 or CB2 receptor

(Charalambous et al., 1992; Guo et al.,

1994; Morse et al., 1995; Picone et al.,

2002). Some have been rationally de-

signed to incorporate pharmacophores

that react irreversibly in a chemically se-

lective manner with CB-receptor amino

acid residues at or near the receptor’s li-

gand-binding site. This feature enables the ligands to be used

as cannabinoid-receptor affinity probes that, in conjunction

with site-directed mutagenesis, are integrated into the LAPS

paradigm for characterizing CB-receptor-binding domains.

One such compound, (-)-70-isothiocyanato-11-hydroxy-10,10-di-

methylheptylhexahydrocannabinol (AM-841), is a classical CB

analog with a 7-isothiocyanate (NCS) moiety at the terminus of

its C-3 alkyl side chain (Figure 1A). We have previously impli-

cated cysteine C6.47(355) as the site of covalent attachment of

the AM-841 NCS group to the CB1 receptor, leading to receptor

activation (Picone et al., 2005).

Receptor amino acid residues are numbered herein using the

Ballesteros and Weinstein (1995) scheme. Accordingly, the most

highly conserved residue across GPCRs within a given family in

each TMH is assigned a locant of 50. This number is preceded by

the TMH number and followed in parentheses by the sequence

number. All other residues in a TMH are numbered relative to

this residue. For example: The most highly conserved residue
1208 Chemistry & Biology 15, 1207–1219, November 24, 2008 ª2008 Elsevier Ltd All rights reserved
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Table 1. Ligand-Binding Parameters for WT and C6.47(257) Mutant hCB2 Receptors

[3H]-CP55940 [3H]-WIN55212-2

Kd (nM) Bmax (pmol/mg) Kd (nM) Bmax (pmol/mg)

WT hCB2 0.67 (0.51–0.83) 1.19 (1.01–1.37) 3.54 (2.27–4.80) 2.96 (2.66–3.26)

hCB2 C6.47(257)A 1.23 (0.73–1.78) 0.96 (0.84–1.08) 2.89 (1.80–3.99) 3.39 (3.05–3.73)

hCB2 C6.47(257)S 0.85 (0.48–1.22) 1.07 (0.95–1.18) 3.10 (0.92–5.29) 2.82 (2.28–3.36)

Saturation-binding assays were performed using membranes from stably transfected HEK293 cells and [3H]-CP55940 and [3H]-WIN55212-2 as the

radioligands. The Kd and Bmax values shown are the means of at least 3 independent experiments performed in triplicate; 95% confidence intervals

are given in parentheses.
in TMH6 of the hCB2 receptor is P6.50(260). The residue that

immediately precedes it is designated F6.49(259).

The present study examines experimentally the ligand-binding

motif of the hCB2 receptor. We identify C6.47(257) as the cyste-

ine residue in transmembrane helix (TMH) 6 of the human CB2

(hCB2) receptor homologous to C6.47(355) in the CB1 receptor

with which the NCS moiety of AM-841 interacts. Direct evidence

is presented that C6.47(257) is an essential residue within the

hCB2 receptor-binding pocket. We demonstrate that AM-841

elicits a sustained activation of the hCB2 receptor with signifi-

cantly greater potency than it displays at the hCB1 receptor.

C6.47(257) is part of the highly conserved CWXP motif, a putative

molecular hinge essential for ligand recognition by family A,

group I GPCRs implicated in their activation (Lagerström and

Schiöth, 2008; Reggio, 2006). Experimental evidence is also ad-

vanced that the alkyl tail of AM-841 is oriented within a binding

pocket in TMH6 of the hCB2 receptor via a ligand-binding motif

quite distinct from that of the CB1 receptor. Additionally, we have

targeted a highly conserved (Jensen et al., 2001; Shi et al., 2002)

lysine residue, K3.28(109), in TMH3 of the hCB2 receptor, which

has been implicated by mutational analysis in the recognition of

several cannabinergic compounds by the hCB1 receptor (Song

and Bonner, 1996). The present work directly shows that this

conserved residue appears to play little role in ligand-hCB2

receptor interaction. The aggregate data illustrate how our

LAPS approach, by integrating the complementary strengths of

affinity labeling with covalent probes and site-directed mutagen-

esis, enables direct discrimination between the ligand-binding

motifs of the CB1 and CB2 receptors. These data help satisfy

the need for structural detail on ligand recognition by the hCB2

receptor and, perhaps, GPCRs in general while helping inform

the development of selective hCB2-receptor ligands as potential

drugs.

RESULTS

Characterization of Heterologously Expressed
Wild-Type and Mutant hCB2 Receptors
Stably transfected polyclonal human embryonic kidney (HEK)

293 cell lines were generated that express either the nonmutated

wild-type (WT) hCB2 receptor or hCB2 receptors with amino

acid substitutions at C6.47(257). Cell lines expressing the

hCB1 or hCB2 receptor mutated to replace lysine K3.28(192)

or K3.28(109), respectively, with alanine were also generated.

Receptor Kd and Bmax values for individual cell lines were then

determined in saturation-binding assays performed on isolated

membranes with either [3H]-CP55940 or [3H]-WIN55212-2 as

radioligand. The WT hCB2 receptor and the hCB2 C6.47(257)A
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and hCB2 C6.47(257)S mutants demonstrated characteristic Kd

values of 0.67 nM, 1.23 nM, and 0.85 nM, respectively, with [3H]-

CP55940 (Table 1), whereas no specific binding was observed

with C6.47(257)K, C6.47(257)I, C6.47(257)L, C6.47(257)D or

C6.47(257)Y mutant hCB2 receptors (data not shown). WT and

hCB2 C6.47(257)A and hCB2 C6.47(257)S mutant receptors

displayed comparable affinity for [3H]-WIN55212-2 (Table 1). No

specific radioligand binding to membranes from nontransfected

HEK293 cells was observed (data not shown), ruling out gross,

nonspecific ligand-membrane interactions.

Ligand Binding Affinities for WT hCB2 and Mutant
Receptors
Binding affinities for the WT hCB2 receptor and C6.47(257) hCB2

receptor mutants were defined using ligands representative of

different cannabinergic classes in competitive binding assays

with [3H]-CP55940 and [3H]-WIN55212-2. The covalent ligand

AM-841, a structurally optimized and functionalized classical

CB agonist, was employed along with its noncovalent congeners

AM-4056 and AM-4043 (Deng et al., 2005; Picone et al., 2005;

Shen et al., 2006), in which the NCS group of AM-841 is

substituted by H or Br, respectively. We also included the

classical plant-derived CB D9-THC, the aminoalkylindole analog

AM-2233, the endocannabinoid AEA, and the CB2-receptor

selective biarylpyrazole SR144528 (Figure 1A).

The binding affinities of the hCB2 C6.47(257)S mutant

receptor for the classical CB analogs AM-841, AM-4043, and

AM-4056 in competition with radioligand [3H]-CP55940 were

comparable to those of the WT hCB2 receptor (Table 2A). Con-

versely, the ability of these three ligands to displace CP55940

from the hCB2 C6.47(257)A mutant was enhanced by at least

2-fold. Consistent with the saturation-binding data (Table 1), no

specific binding of AM-841 by the C6.47(257)K, C6.47(257)I,

C6.47(257)L, C6.47(257)D, and C6.47(257)Y hCB2 receptor

mutants was observed in a competitive binding assay with

[3H]-CP55940 radioligand (data not shown). The phytocannabi-

noid D9-THC, which contains a 5-carbon alkyl chain as com-

pared to the longer 3-dimethylheptyl chain in AM-841 (Figure 1A),

evidenced a comparably lower affinity for the WT and each

mutant hCB2 receptor.

D9-THC displaced [3H]-WIN55212-2 and showed a 5-fold

increase in affinity for the hCB2 C6.47(257)A mutant over the

WT hCB2 receptor (Table 2B). However, complete [3H]-

WIN55212-2 dissociation by D9-THC was not observed in either

the WT or mutant receptors. Compared to the WT hCB2

receptor, hCB2 C6.47(257)A and hCB2 C6.47(257)S mutant re-

ceptors showed the greatest (over 11-fold) incremental in-

creases in affinity for AM-2233, a potent aminoakylindole
9, November 24, 2008 ª2008 Elsevier Ltd All rights reserved 1209
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Table 2. Binding Affinities for hCB2 WT and C6.47(257) Mutant Receptors and the hCB1 K3.28(192)A Mutant Receptor Using Either

[3H]-CP55940 or [3H]-WIN55212-2 as the Radioligand

(A) [3H]-CP55940 Ki (nM)

AM-841 AM-4043 AM-4056 D9-THC

WT hCB2 1.51 (1.17–1.93) 2.64 (2.15–3.23) 2.14 (1.72–2.66) 50.08 (36.4–68.9)

hCB2 C6.47(257)S 1.68 (1.08–2.62) 1.51 (1.20–1.89) 1.52 (1.08–2.13) 38.72 (24.73–60.62)

hCB2 C6.47(257)A 0.71 (0.40–1.26) 0.88 (0.64–1.22) 1.03 (0.65–1.63) 34.10 (18.53–62.75)

hCB2 K3.28(109)A 2.31 (1.56–2.83) 1.14 (0.81–1.59)

hCB1 K3.28(192)A No Specific Binding No Specific Binding

B

(B) [3H]-WIN55212-2 Ki (nM)

D9-THC AM-841 AM-4043 AM-4056 AEA AM-2233 SR144528

WT hCB2 17.1 (13.0-22.5) 4.5 (3.8-5.3) 2.4 (2.0-2.9) 2.3 (1.7-3.0) 208.7 (163-267) 9.2 (7.3-11.6) 32.4 (25.0-42.1)

hCB2 C6.47(257) A 2.9 (1.1 - 7.9) 0.7 (0.6-1.0) 0.8 (0.6-1.0) 0.5 (0.31-0.8) 211.0 (176-252) 0.5 (0.38-0.6) 14.3 (10.6-19.2)

hCB2 C6.47(257)S 17.6 (11.0-28.2) 1.5 (1.3-1.8) 1.4 (1.1-1.8) 1.2 (0.9-1.6) 365.8 (307-435) 0.8 (0.6-0.9) 14.0 (11.4-17.2)

Competitive binding assays were performed, and binding affinities were determined, using membrane preparations from stably transfected HEK293

cells. Ki values are the means of at least 3 independent experiments performed in triplicate, with 95% confidence intervals shown in parentheses.
cannabinergic ligand developed by us and related to WIN55212-

2 (Deng et al., 2005). The two mutant hCB2 receptors also

evidenced some 3–6-fold greater affinity than the WT hCB2

receptor for AM-841. These data establish that the hCB2 recep-

tor recognizes and binds AM-841, necessary prerequisites for

experiments detailed below with this ligand. Because binding

of AM-841 to the WT hCB2 receptor is irreversible, reported

affinities of this receptor for AM-841 should be regarded as

‘‘apparent Ki’’ values (Picone et al., 2005).

To determine ligand-binding specificity and, ultimately, any

differences in recognition site and activation between CB1 and

CB2 receptors, the amino acid at position K3.28, a highly

conserved site across family A, group 1 GPCRs (Jensen et al.,

2001; Shi et al., 2002), was modified. The hCB2 K3.28(109)A

mutant receptor evidenced Ki values similar to those for WT

hCB2 receptor for our experimental compounds AM-841 and

AM-4056 using [3H]-CP55940 as the radioligand (Table 2A).

Conversely, no specific binding of AM-841 or AM-4056 was ob-

served by the hCB1 K3.28(192)A mutant receptor in a competi-

tion binding assay with [3H]-CP55940 as the radioligand (data

not shown). In addition, no saturable binding by the hCB1

K3.28(192)A mutant receptor was observed using [3H]-

CP55940 or [3H]-SR141716A (data not shown). Mutational evi-

dence (Tao et al., 1999) has implicated K3.28(192) in the binding

of various cannabinergic agonists by the hCB1 receptor. The lack

of effect of mutating this highly conserved position on ligand rec-

ognition by the hCB2 receptor suggests that the hCB2 receptor

has a unique binding architecture with respect to that of the

hCB1 receptor.

Covalent hCB2 Receptor Labeling
AM-841 covalently binds with high affinity to the WT hCB2

receptor, whereas its binding is prohibited by the amino acid

substitutions in hCB2 C6.47(257)A and hCB2 C6.47(257)S (vide

supra; Table 2). After a 1 hr preincubation of membranes with

9 nM AM-841 (�6-fold the receptor’s apparent Ki for AM-841;

Table 2A) at 30�C followed by extensive buffer wash-out to

remove unbound ligand, the WT hCB2 receptor displayed

a significantly lower Bmax for [3H]-CP55940 binding, compared

with ‘‘control’’ membranes without prior AM-841 exposure
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(0.22 versus 1.05 pmol/mg, respectively) (Figure 1B). Mem-

branes preincubated only with buffer prior to washing and

incubation with [3H]-CP55940 demonstrated �80% irreversible

AM-841 binding (data not shown). The hCB2 C6.47(257)K,

C6.47(257)I, C6.47(257)L, C6.47(257)D, and C6.47(257)Y mutant

receptors were not evaluated, since they evidenced no specific

binding of [3H]-CP55940 in saturation binding assays (data not

shown).

To explore the potential involvement of other residues in the

covalent attachment of AM-841 to the WT hCB2 receptor, we

also developed the hCB2 C7.38(284)S and hCB2 C7.42(288)S

mutants (Figure 2). Our prior hCB2 receptor modeling would pre-

dict that these two cysteine residues, located within the upper

half of TMH7, are candidates for a covalent nucleophilic reaction

with AM-841’s NCS moiety (Tao et al., 1999; Zhang et al., 2005).

In [3H]-CP55940 displacement experiments, the WT hCB2 re-

ceptor and the hCB2 C7.38(284)S and hCB2 C7.42(288)S mutant

receptors exhibited an�80% decrease in [3H]-CP55940 binding

after AM-841 pretreatment. In marked contrast, the hCB2

C6.47(257)A and hCB2 C6.47(257)S mutant receptors displayed

no distinct decrease in [3H]-CP55940 Bmax after AM-841

pretreatment (Figure 1B). These results, summarized in Fig-

ure 1C, demonstrate that mutating the cysteine residues in

TMH7 to serine did not affect AM-841’s covalent binding to the

hCB2 receptor. However, mutation of C6.47(257) abrogated

the irreversible interaction between the hCB2 receptor and

AM-841. Additionally, preincubation of the WT hCB2 receptor

with either AM-4043 or AM-4056 (two nonelectrophilic conge-

ners of AM-841 unable to bind covalently to the hCB2 receptor)

did not affect its [3H]-CP55940 Bmax in a subsequent saturation-

binding assay (data not shown). Taken together, these results

provide strong and complementary evidence that C6.47(257) is

the site of covalent attachment of the NCS moiety of AM-841

to the hCB2 receptor.

Functional Characterization of hCB2 WT and Mutant
Receptors
Since the hCB2 receptor is negatively coupled to adenylyl

cyclase (Rhee et al., 1998), inhibition of forskolin-stimulated

cAMP production was used to index WT and mutant hCB2
8 Elsevier Ltd All rights reserved
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Figure 2. Schematic Representation of the hCB2 Receptor

Amino acids subjected to mutation in this study, C6.47(257), C7.38(284), and C7.42(288), are circled in bold. Alignment of the V6.43/I6.46 groove and the CWXP

motif in the CB1 and CB2 receptors is highlighted.
receptor function. Both AM-841 and its structural analog, AM-

4056, acted as agonists for the WT hCB2 receptor, inhibiting

forskolin-stimulated cellular cAMP formation in a concentra-

tion-dependent manner, as did the prototypic agonist,

WIN55212-2 (Figure 3). Notably, AM-841 displayed a strikingly

lower IC50 (0.079 nM) at the WT hCB2 receptor, compared with

AM-4056 (3.27 nM) and WIN55212-2 (12.92 nM) (Table 3). No

significant difference was observed between the respective

IC50 values for AM-841 and AM-4056 inhibition of cAMP produc-

tion by hCB2 C6.47(257)A-expressing or hCB2 C6.47(257)S-

expressing cells (Table 3).

Molecular Modeling of hCB2 R*-Ligand Complexes
Protein cysteine residues are most likely to react with NCS-

containing molecules such as AM-841 (Tahtaoui et al., 2003).

This finding and the data presented above on AM-841 covalent

binding to WT and mutant hCB2 receptors offer sound justifica-

tion for interactive docking studies aimed at modeling AM-841

binding interactions with the hCB2 receptor. Our previously

advanced model of the hCB2 R* receptor (Zhang et al., 2005)

implicated each of the five cysteine residues in the TMH domains

of the hCB2 receptor at the level of the ligand-binding pocket—
Chemistry & Biology 15, 1207–12
C1.39(40), C2.59(89), C6.47(257), C7.38(284) and C7.42(288)

—as having the potential to form a covalent bond with

AM-841. C1.39(40) is disposed facing into the binding pocket

between TMH2 and TMH7, but M7.40(286) sterically blocks

this residue. C2.59(89) is located in the TMH2-3 interface and

is accessible to the thiol-directed agent (2-aminoethyl)methane

thiosulfonate hydrobromide (MTSEA). C7.38(284) is extracellular

to C7.42(288) by one helix turn. In our model, C7.38(284)

and C7.42(288) are located at the TMH6–7 interface, with

C7.42(288) comparatively more accessible to the ligand-binding

pocket. C6.47(257) is one turn below the level of C7.42(288) and

fairly deep within the binding pocket. C6.47(257) changes its ori-

entation upon activation of the b2-adrenergic receptor, becom-

ing accessible within the binding pocket only when that receptor

is R* (Javitch et al., 1997). According to our prior modeling of the

hCB2 receptor (Zhang et al., 2005), this cysteine residue faces

lipid in R and is within the TMH6–7 interface in R*.

To identify possible sites of interaction between AM-841

and the hB2 receptor, the covalent bond between the NCS-

functionalized tail of AM-841 and each accessible candidate

cysteine residue—C2.59(89), C6.47(257), C7.38(284), and

C7.42(288) —was first formed. Potential binding sites were
19, November 24, 2008 ª2008 Elsevier Ltd All rights reserved 1211
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Figure 3. Concentration-Dependent Inhibi-

tion of Forskolin-Stimulated cAMP Accu-

mulation in HEK293 Cells Expressing hCB2

WT or Mutant Receptors by Various

Agonists

(A) Comparison among AM-841, AM-4056, and

WIN55212-2 to inhibit forskolin-stimulated cAMP

accumulation in the HEK293 cells expressing WT

hCB2 receptor.

(B) Comparison of the ability of AM-841 to

compete with forskolin-stimulated cAMP accumu-

lation in HEK293 cells expressing either the

WT hCB2 receptor or the hCB2 C6.47(257)A or

C6.47(257)S mutant receptor.
screened using the criterion from hCB2-receptor mutational

studies that S7.39(285) is an interaction site for classical

cannabinoids (Rhee and Kim, 2002). It was found that only

when AM-841 was covalently attached to C6.47(257) could it hy-

drogen-bond with S7.39(285). In this case, the carbocyclic

CH2OH substituent at the g position of AM-841 was the hydro-

gen-bonding partner with S7.39(285) (d = 2.62 Å; O – H- -O angle

= 175�). With this as an anchoring interaction, the model was

probed using interactive computer graphics for additional sites

that could hydrogen-bond with the pyran oxygen or with the

phenolic hydroxyl of AM-841. No interaction site for the pyran

oxygen was identified in the hCB2 receptor. However, we found

that the phenolic hydroxyl of AM-841 could hydrogen-bond with

S6.58(268) (d = 2.61 Å; O – H- -O angle = 176�) and still maintain

its interaction with S7.39(285) and covalently link to C6.47(257).

The hCB2-receptor R* binding site for AM-841 modeled here

is the energy-minimized complex depicted in Figure 4. Most

notably, the orientation of AM-841 in the binding pocket of the

hCB2 receptor is quite different in a number of salient aspects

from its orientation in the binding pocket of the CB1-receptor (Pi-

cone et al., 2005). In our hCB2 receptor model, the tricyclic ring

of AM-841 is oriented nearly perpendicularly to the TMH helices.

Conversely, its orientation in the hCB1 receptor is parallel to the

TMHs (see Figure 9 in Picone et al., 2005). Figure 4 also illustrates

the formation of a salt bridge involving K3.28(109). Contrary to

the documented importance of K3.28 to classical, nonclassical,

and endogenous cannabinoid binding by the CB1 receptor (Chin

et al., 1998; Hurst et al., 2002; Song and Bonner, 1996), muta-

tional analysis suggests that K3.28 is not essential for ligand

binding to the hCB2 receptor (Tao et al., 1999 and present

study). Extracellular loop (EC) 3 in the hCB2 receptor

(TTLSDQVKK), when compared to its paralog in the hCB1 recep-

tor (GKMNKLIKT), exhibits one important amino acid difference,

the negatively charged D275 residue centrally located in EC3.

We have hypothesized that D275 forms a salt bridge with
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K3.28(109) in the hCB2 receptor, rendering K3.28(109) less avail-

able for ligand interaction. This assumption was used to select

an EC3 conformation in the modeling studies reported here. In

the model illustrated (Figure 4), K3.28(109) is involved in a salt

bridge with D275 of EC3 (d = 2.55 Å; N – H- -O angle = 171�)

and in a hydrogen bond with N2.63(93) (d = 2.66 Å; N – H- -N

angle = 168�). D275 also forms a hydrogen bond with S274 in

EC3 (d = 2.67 Å; O – H- -O angle = 170�) and with S2.60(90)

(d = 2.63 Å; O – H- -O angle = 160�), a residue that is accessible

from within the binding pocket in the hCB2 receptor due to

the helix distortion produced by S2.54(84) (see Experimental

Procedures and Zhang et al., 2005).

DISCUSSION

The present report has employed the LAPS approach using

a high-affinity cannabinergic compound, AM-841, as covalent

probe for direct experimental characterization of the ligand-

binding architecture of the hCB2 receptor. AM-841 is one of sev-

eral novel cannabinergic ligands we have rationally designed to

interact irreversibly and covalently with specific amino acid res-

idues at or immediately adjacent to the CB1- and/or CB2-recep-

tor-binding pocket (Charalambous et al., 1992; Guo et al., 1994;

Morse et al., 1995; Picone et al., 2005). AM-841’s reactive NCS

group does not interfere with its binding to the hCB2 receptor,

since competitive-binding data herein show that the affinity of

AM-841 for the hCB2 receptor is comparable to that of two

AM-841 analogs (AM-4043 and AM-4056) lacking the NCS moi-

ety. Because of their highly nucleophilic thiol group, cysteines

are the most likely amino acids to participate in a nucleophilic

addition reaction with the AM-841 NCS moiety (Tahtaoui et al.,

2003). Although the amino group of lysine is capable of interact-

ing with an NCS group, under our experimental conditions

a lysine amino group is a significantly weaker nucleophile than

a cysteine thiol. Furthermore, the only lysine located in the
Table 3. Inhibition of Forskolin-Stimulated cAMP Accumulation in Cells Expressing the WT or a C6.47(257) Mutant hCB2 Receptor by

AM-841, AM-4056, and WIN55212-2

AM-841 (nM) AM-4056 (nM) WIN55212-2 (nM)

WT hCB2 0.079 (0.024–0.267) 3.27 (0.73–14.59) 12.92 (3.87–43.15)

hCB2 C6.47(257)A 6.01 (2.09–17.25) 2.62 (0.75–9.14)

hCB2 C6.47(257)S 2.88 (0.88–9.42) 8.82 (3.94–19.78)

cAMP assays were performed using cells from stably transfected HEK293 WT and mutant lines. Data are the mean IC50 values from at least 3

independent experiments performed in triplicate with 95% confidence intervals shown in parentheses.
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Figure 4. Illustration of the CB2 R*/AM-841 Binding Site from Modeling Studies

TMHs 1, 4, and 5 have been omitted from this view for simplicity. In the energy-minimized CB2 R*/AM-841complex in which AM-841 is covalently attached to

C6.47(257), the carbocyclic ring CH2OH of AM-841 hydrogen-bonds with S7.39(285) (d = 2.62 Å; O – H- -O angle = 175�), while the phenolic hydroxyl of AM-841

hydrogen-bonds with S6.58(268) (d = 2.61 Å; O – H- -O angle = 176�). Also illustrated here is the formation of a salt bridge between D275 in EC3 and K3.28(109),

a residue that is crucial for classical CB binding to the CB1 receptor (Song and Bonner, 1996), but which is not important for binding to the CB2 receptor. In

the final, energy-minimized complex illustrated here, K3.28(109) is involved in a salt bridge with D275 of the EC3 loop (d = 2.55 Å; N – H- -O angle = 171�)

and in a hydrogen bond with N2.63(93) (d = 2.66 Å; N – H- -N angle = 168�). D275 also forms a hydrogen bond with S274 in EC3 (d = 2.67 Å; O – H- -O

angle = 170�) and with S2.60(90) (d = 2.63 Å; O – H- -O angle = 160�), a residue that is accessible from within the binding pocket in the CB2 receptor due to

the helix distortion produced by S2.54(84) (Experimental Procedures and Zhang et al., 2005).
putative binding pocket of the hCB2 receptor is in TMH3, a region

unlikely to associate with the alkyl tail of nonclassical or classical

cannabinoids (Tian et al., 2005).

Although in the binding experiments reported we utilized

membranes from HEK cells overexpressing hCB2 receptors, it

is possible that a non-CB2-binding site is responsible for the

�2–3-fold greater mean hCB1-receptor Bmax values between

[3H]-WIN55212-2 over [3H]-CP55940 (Table 1). Putative binding

site(s) for WIN55212-2 distinct from CB1 and CB2 receptors

have been proposed and largely remain to be characterized fully

(Dhawan et al., 2006; Fride et al., 2003; Monory et al., 2002). We

detected no specific radioligand binding to membranes from

nontransfected HEK cells, however. Alternatively, the mean

Bmax differences we observe between the two radioligands em-

ployed appear to be within an acceptable range for quantitative

CB-receptor assays among replicate cell cultures/membrane

preparations. Mean cannabinoid-receptor Bmax values over

a 2–3-fold range using a single radioligand have been considered

‘‘comparable’’ or ‘‘similar’’ (Shire et al., 1996; Tao and Abood,

1998; Tao et al., 1999).
Chemistry & Biology 15, 1207–12
Prior modeling predicted that C6.47 is the cysteine residue in

both the hCB1 and hCB2 receptors closest to the terminal posi-

tion of the alkyl tail of classical and nonclassical CBs (Picone

et al., 2005; Raitio et al., 2005). In the present study, two alternate

cysteine residues, C7.38(284) and 7.42(288), located in TMH7

and in moderate proximity to C6.47(257) (Zhang et al., 2005)

were also probed in order to rule out the possibility that they

may be alternate sites of interaction with AM-841. C6.47(257)

was mutated to seven different amino acids representing

a wide diversity of side-chain reactivities and steric constraints:

C6.47(257)A, S, K, L, I, Y, and D. Our data show that the hCB2

C6.47(257)A and hCB2 C6.47(257)S mutant receptors bind

with similar Ki values as WT hCB2 receptor using AM-841 as dis-

placing ligand and CP55940 or WIN-55212-2 as radioligand.

These mutant receptors did not bind AM-841 covalently. Impor-

tantly, neither C7.38(284) nor C7.42(288) covalently interacted

with AM-841. These aggregate data unequivocally demonstrate

that C6.47(257) is the site of covalent attachment of AM-841

to the hCB2 receptor. Covalent AM-841 binding was shown to

activate the hCB2 receptor (i.e., inhibit forskolin-stimulated
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cAMP production) with exceptional potency as compared to ei-

ther AM-841’s effect on the hCB1 receptor or AM-4056’s activity

as hCB2-receptor agonist. This enhanced potency is observed

only with the WT hCB2 receptor, but not with the two binding-

competent hCB2 C6.47(257)A and hCB2 C6.47(257)S mutant re-

ceptors. The molecular basis for the exceptional agonist potency

of AM-841 following its covalent interaction with the hCB2 re-

ceptor’s C6.47(257) residue is currently being explored.

Misfolding leading to improper interacellular protein transloca-

tion/sequestration is a particular problem with mutated GPCRs,

including CB receptors (Shire et al., 1996; Tao et al., 1999). Con-

sequently, the lack of specific ligand binding we have observed

by some mutant hCB2 receptors could potentially reflect func-

tional receptors improperly integrated into/disposed within the

cell membrane, obviating ligand binding; dysfunctional recep-

tors properly integrated into the cell membrane; and/or abnormal

receptor translocation/compartmentalization such that recep-

tors do not reach the cell membrane. In any event, the result is

the same,—that is, an abortive receptor is unable to bind ligand

at the physiologically relevant membrane site, which would

translate operationally into the observed lack of specific ligand

binding to select mutant hCB2 receptors in our membrane

preparations.

The ligand-binding properties of the individual mutants offer

insight into the binding motif of classical cannabinoids to the

hCB2 receptor. Our data show that, compared with the WT

hCB2 receptor, the mutation C6.47(257)A maintains or enhances

the binding affinities of the hCB2 receptor for the cannabinergic

ligands examined in this study. Likewise, the hCB2 C6.47(257)S

mutant and WT receptors also exhibit comparable affinities for

the majority of ligands tested. The basis for the higher affinity

of hCB2 C6.47(257)S versus WT receptor for the aminoalkylin-

dole AM-2233 (Table 2B) is under investigation. The aggregate

binding data for AM-841, [3H]-CP55940, and [3H]-WIN55212-2

suggest that there is partial convergence of hCB2-receptor-

binding site for these three ligands, which appear to occupy

a similar, though not necessarily identical, space. For example,

the data in Table 2 indicate that C6.47(257) plays a rather permis-

sive role in both D9-THC and [3H]-CP55940 binding by the hCB2

receptor, since C6.47(257) mutation to either serine or alanine

did not alter D9-THC’s ability to displace [3H]-CP55940, whereas

C6.47 may be functionally more relevant to [3H]-WIN55212-2

binding when challenged by competing ligand, since

C6.47(257) mutation to alanine markedly facilitated [3H]-

WIN55212-2, but not [3H]-CP55940, displacement by D9-THC

and most other ligands tested. Because cysteine and serine

are very conservative, isosteric analogs of one another bearing

polar, uncharged side-chains, whereas alanine has a nonpolar,

smaller aliphatic (i.e., methyl) side-chain, these data suggest

that a combination of amino-acid polarity and side-chain

bulk at hCB2-receptor C6.47(257) is particularly influential on

[3H]-WIN55212-2 binding and, hence, would represent a consid-

eration in the design and targeting of ligands to the hCB2

receptor for therapeutic purposes.

From the structural and functional evidence presented in this

study, we propose that the hCB1 and hCB2 receptors have dif-

ferent binding motifs with respect to cannabinergic ligands such

as AM-841. Our previous computational docking models for hCB

receptors (Picone et al., 2005; Zhang et al., 2005) as elaborated
1214 Chemistry & Biology 15, 1207–1219, November 24, 2008 ª200
by the modeling presented herein support this conclusion. The

centrality of position C6.47 is conserved in the CB1 and CB2

receptors (as with most other members of family A, group

1 GPCRs). In contrast, as demonstrated with ligands AM-841

and AM-4056, the overall binding template for each principal

cannabinoid receptor is unique with respect to the highly

conserved residue K3.28A.

It is tempting to relate our observations to GPCRs other than

the hCB2 receptor. The cysteine residue C6.47(285) in the hu-

man b2-adrenergic receptor homologous to hCB2 C6.47(257)

becomes accessible to the binding pocket only when the re-

ceptor is in R*, proline P6.50(288) initiating the rotational move-

ment of C6.47(285) leading to activation (Javitch et al., 1997).

We hypothesize that a similar conformational change also oc-

curs upon activation of the WT hCB2 receptor such that its

C6.47(257) residue becomes accessible within the binding

pocket only in R*. Agonists appear to bind to the CB2 R*

receptor, but not the R (Leff, 1995; Samama et al., 1993).

According to our published hCB2 receptor model (Zhang

et al., 2005), C6.47(285) faces lipid in R and is located in the

TMH6-7 interface in R*. The cAMP functional data herein

show that AM-841 and its noncovalent analog, AM-4056,

both act as hCB2-receptor agonists. Thus, it is likely that

AM-841 binds favorably to hCB2 R* receptor, wherein the

C6.47(257) residue is accessible.

Of the five cysteine residues modeled in the ligand-binding

pocket of the hCB2 receptor, C6.47(257) is located most deeply

within the pocket, near the center of the lipid bilayer (Zhang

et al., 2005). On the assumption that the NCS functional group

of AM-841 reacts with the first cysteine residue with which it

comes into contact in the hCB2 receptor’s ligand-binding

pocket, identification of C6.47(257) as the site for covalent at-

tachment of AM-841 to the hCB2 receptor suggests that the

tail of AM-841 enters the receptor’s binding pocket at great

depth. We therefore hypothesize that AM-841, a highly lipophilic

molecule, enters the hCB2-receptor-binding pocket from the

surrounding membrane domain and not from the aqueous extra-

cellular milieu, the lipid bilayer helping direct AM-841 to the hCB2

receptor’s binding pocket. This view is supported by results from

small-angle X-ray diffraction and differential scanning calorime-

try studies of classical cannabinoids in model membranes. We

have previously shown that D8-THC intercalates between

contiguous acyl chains in the membrane lipid bilayer,

D8-THC’s phenol group located near the phospholipid head-

groups and its alkyl tail deeper within the bilayer and oriented

parallel to the fatty-acyl chains (Mavromoustakos et al., 1991).

The terminal iodo group of 50-I-Me-D8-THC resides in a region

extending z5 Å from the center of the membrane bilayer

(Mavromoustakos et al., 1995). Another lipophilic CB2-receptor

ligand structurally related to the endocannabinoid anandamide

orients its terminal carbon tail in a similar fashion within the

bilayer, positioned for a productive interaction with C6.47 (Tian

et al., 2005).

More generally, the current study extends prior demonstration

(Picone et al., 2002 and 2005; Zvonok et al., 2008) that function-

alized, covalent molecular probes are valuable experimental

tools for obtaining direct information on functionally relevant

interactions between proteins and small-molecule ligands. As

afforded by our LAPS paradigm, characterization of the hCB2
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receptor’s ligand-recognition site and its similarities to and

differences from that of the hCB1 receptor should help inform

the rational design of future generations of selective hCB2-

receptor ligands having potential therapeutic utility.

SIGNIFICANCE

Pharmacological modulation of endocannabinoid signaling

by altering transmission through the two main CB receptors,

CB1 and CB2, holds far-reaching therapeutic promise. The

differential tissue distributions of CB1 and CB2 receptors,

their distinct physiological and regulatory roles, and the

potential psychobehavioral side-effects of centrally acting

CB1-receptor ligands have placed great emphasis on

targeting novel, high-affinity ligands that bind selectively

to one or the other CB receptor subtype. In particular, selec-

tive CB2-receptor agonists are increasingly being sought as

potential therapeutics for neurodegenerative, inflammatory,

and immunological diseases. Thorough understanding of

the respective ligand-binding interactions of the CB1 and

CB2 receptors, the structural features of receptor activation,

and the pharmacophore requirements at each receptor’s

binding domain is complicated by the lack of direct experi-

mental characterization of these (and virtually all other)

GPCRs. This information is essential to the optimal design

and exploitation of CB1- and CB2-selective ligands for ther-

apeutic gain. The present work has utilized a chemically

selective, covalent affinity probe (AM-841) and site-directed

mutational analysis to characterize experimentally the bind-

ing domain of the hCB2 receptor. Our data demonstrate the

importance of TMH6 C6.47(257) in ligand recognition by and

activation of the hCB2 receptor, a role similar to that of the

CB1 receptor’s C6.47(355). In marked contrast, another

highly conserved GPCR residue, K3.28(109), was shown to

play little role in ligand-hCB2 receptor interaction, although

it is crucial to the recognition of cannabinergic ligands by the

CB1 receptor. The direct experimental evidence provided

supports general conclusion that CB1 and CB2 receptors

have distinct ligand-binding motifs. Our data invite extrapo-

lation from other GPCRs as to the importance of C6.47(257)

in the conformational changes leading to hCB2-receptor ac-

tivation. By characterizing the hCB2 receptor’s binding motif

and how it differs with respect to that of the hCB1 receptor,

the present study helps inform the rational design of selec-

tive hCB2-receptor (activating) ligands with therapeutic

potential. The data also add to the paucity of experimen-

tally-derived general structural detail for GPCRs, which

constitute a prime class of drug targets.

EXPERIMENTAL PROCEDURES

Materials

Chemicals and reagents were obtained from Sigma (St. Louis, MO) at highest

purity/grade unless otherwise noted. D9-THC, AM-841, AM-2233, AM-4043,

and AM-4056 were synthesized at the Center for Drug Discovery, Northeastern

University (Boston, MA). CP55940, [3H]-CP55940, AEA, and SR144528

were supplied by the National Institute on Drug Abuse (Bethesda, MD). [3H]-

WIN55212-2 was purchased from PerkinElmer (Wellesley, MA). pcDNA 3.1+

was purchased from Invitrogen (Carlsbad, CA). Oligonucleotide primers

were synthesized by Integrated DNA Technologies (Coralville, IA).
Chemistry & Biology 15, 1207–12
Site-Directed Mutagenesis, Cell Culture, Transfection,

and Transgene Integrity

The partial-length cDNA encoding the translated region of the hCB2 receptor

was provided by Sean Munro (MRC Laboratory of Molecular Biology, Cam-

bridge, UK). The hCB2-receptor translated region was sequenced for integrity

and subcloned into pcDNA3.1+ by polymerase chain reaction (PCR) using

primers spanning the native start and stop codons. An appropriate Kozak ini-

tiation site was part of the endogenous sequence. Site-directed mutagenesis

of pcDNA 3.1+-hCB2 was performed with the QuickChange� Site-Directed

Mutagenesis system (Stratagene, La Jolla, CA). Primers were annealed and

extended using 18 cycles with an Eppendorf Mastercycler (Westbury, NY)

and Pfu DNA polymerase (Stratagene). Primers used to make the following

mutations in hCB2, C6.47(257)A, C6.47(257)S, C6.47(257)K, C6.47(257)I,

C6.47(257)L, C6.47(257)D, C6.47(257)Y, C7.38(284)S and C7.42(288)S, and

K3.28(109)A, were as follows (in the order listed; targeted codons are in bold

and underlined): Forward 50-GCT GTG CTC CTC ATC GCC TGG TTC CCA

GTG CTG-30, Reverse 50-CAG CAC TGG GAA CCA GGC GAT GAG GAG

CAC AGC-30; Forward 50-GCT GTG CTC CTC ATC AGC TGG TTC CCA

GTG CTG-30, Reverse 50-CAG CAC TGG GAA CCA GCT GAT GAG GAG

CAC AGC-30; Forward 50-G GCT GTG CTC CTC ATC AAG TGG TTC CCA

GTG CTG G-30, Reverse 50-C CAG CAC TGG GAA CCA CTT GAT GAG

GAG CAC AGC C-30; Forward 50-G GCT GTG CTC CTC ATC ATC TGG TTC

CCA GTG CTG G-30, Reverse 50-C CAG CAC TGG GAA CCA GAT GAT

GAG GAG CAC AGC C-30; Forward 50-GTG CTC CTC ATC CTT TGG TTC

CCA GTG-30, Reverse 50-CAC TGG GAA CCA AAG GAT GAG GAG CAC-30;

Forward 50-GTG CTC CTC ATC GAT TGG TTC CCA GTG-30, Reverse

50-CAC TGG GAA CCA ATC GAT GAG GAG CAC-30; Forward 50-GTG CTC

CTC ATC TAT TGG TTC CCA GTG-30, Reverse 50-CAC TGG GAA CCA ATA

GAT GAG GAG CAC-30; Forward 50 - GCC TTT GCT TTC TCC TCC ATG

CTG TG - 30, Reverse 50-CA CAG CAT GGA GGA GAA AGC AAA GGC- 30;

Forward 50-GC TCC ATG CTG TCC CTC ATC AAC TCC-30, Reverse 50-GGA

GTT GAT GAG GGA CAG CAT GGA GC-30. Forward 50-GCT GTC TTC CTG

CTG GCC ATT GGC AGC GTG ACT ATG-30, Reverse- 50-CAT AGT CAC

GCT GCC AAT GGC CAG CAG GAA GAC AGC-30. Primers designed for the

generation of the hCB1-receptor mutant line K3.28A(192) were as follows:

Forward 50-CGC AAC GTG TTT CTG TTC GCC CTG GGT GGG GTC ACG

GCC TCC-30, Reverse 50-GGA GGC CGT GAC CCC ACC CAG GGC GAA

CAG AAA CAC GTT GCG-30. DpnI-treated DNA was transformed into One

Shot Top10 competent Escherichia coli cells (Invitrogen). Plasmid DNA was

isolated using the QIAGEN Midi-Prep Kit (Valencia, CA). Plasmid DNA

sequencing confirmed that only the desired mutations had been effected. All

other DNA manipulations were performed as described elsewhere (Ausubel

et al., 2006).

HEK293 cells (American Type Culture Collection, Manassas, VA) and

HEK293-derived cell lines were cultured using Dulbecco’s modified Eagle’s

medium (DMEM) containing 10% fetal bovine serum, 1% penicillin-streptomy-

cin, 4.5 g/l glucose, and 2 mM glutamine (Tao et al., 1999). HEK293 cells were

transfected with verified mutagenic plasmid DNA utilizing Lipofectamine 2000

with an appropriate amount of linearized plasmid DNA harboring the transgene

cassette according to the vendor’s (Invitrogen) technical manual. Typically,

3–5 independent transfections were performed in parallel and duplicated

over a 3-day period to maximize cell line integrity. Cultures were selected

with the appropriate antibiotics (600 mg/ml G418, as determined by performing

a standard kill curve) over a 10-day period, passed to adherent culture flasks,

grown to a cell volume sufficient to perform preliminary saturation binding

assays, and harvested in PBS with centrifugation and repeated washing.

This method allowed data regarding the efficacy of the receptor transgene

to be collected within 15 days from design to analysis. Cells were cryopre-

served after characterization under liquid nitrogen.

We routinely tested for the presence of all introduced transgenes by PCR

amplification using primers corresponding to the parental vector sequence

flanking the receptor-encoding cDNA (50 and 30 ) matched with internal primers

corresponding to the receptor sequence. By this method, we could generate

amplified fragments of the transgene cassette and avoid endogenous hCB2

receptor amplification. Corresponding transgene cassettes were sequence-

confirmed for integrity of the incorporated encoding sequence and respective

mutation. The results of these analyses ensured that the phenotype correlated

with the genotype in all cases.
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Cell Membrane Preparations and Radioligand Binding Assays

Cells were disrupted by cavitation, and the membrane fraction was obtained

by ultracentrifugation, as detailed elsewhere (Xu et al., 2005). Saturation-

binding assays were performed in a 96-well format. Membrane pellets were

resuspended in 25 mM Tris base/5 mM MgCl2/1 mM ethylenediaminetetraace-

tic acid (EDTA) (TME) containing 0.1% (w/v) BSA (TME-BSA). Membrane,

equivalent to 25 mg protein (DC Protein Assay System; BioRad, Hercules,

CA), was added to each assay well. Radioligands ([3H]-CP55940 or [3H]-

WIN55212-2) were diluted in TME-BSA to yield final assay concentrations

from an order of magnitude below to an order of magnitude above each

predicted Kd. Nonspecific binding was assayed in the presence of 5 mM

respective unlabeled ligand. The assay was performed at 30�C for 1 hr with

gentle agitation. After incubation, samples were transferred to Unifilter GF/B

filter plates, and unbound ligand was removed using a Packard Filtermate-

96 Cell Harvester (Perkin Elmer Packard, Shelton, CT). Filter plates were

washed four times with ice-cold wash buffer (50 mM Tris-base and 5 mM

MgCl2 containing 0.5% BSA [pH 7.4]). Bound radioactivity was quantified

with a Packard TopCount Scintillation Counter. Nonspecific binding was

subtracted from total bound radioactivity to calculate specific radioligand

binding (as pmol/mg protein). Kd values are presented as means with 95%

confidence intervals from at least 3 independent experiments performed in

triplicate (n = 3 or greater). Bmax and Kd values were calculated by nonlinear

regression using GraphPad Prism 3.03 (GraphPad Software, San Diego,

CA) on a Windows platform; one-site binding analysis equation Y = Bmax*X/

(Kd + X). Specific binding in all positive saturable binding assays was typically

between 60%–90% of total binding.

Competition binding assays were performed in a 96-well format, as modified

from Lan et al. (1999). Membrane pellets were resuspended in TME-BSA, and

membrane (equivalent to 25 mg protein) was added to each assay well. The

radioligands [3H]-CP55940 and [3H]-WIN55212-2 were brought to a final

concentration of 0.76 nM or 0.91 nM, respectively, in a total volume of

200 ml TME-BSA. Concentrations of the displacing experimental ligands

were determined using the IGOR Pro (Lake Oswego, OR) software by inputting

an IC50 estimated from the literature or from prior structure-activity studies and

a log-range of 4. Binding incubation and filtration were performed as described

above. IC50 values were calculated by nonlinear regression using GraphPad

Prism software, and Ki values were determined for each ligand. Ki values are

presented as means with 95% confidence intervals from at least 3 indepen-

dent experiments performed in triplicate.

Affinity-labeling assays were performed using membranes prepared as

described above. Five milliliters of 0.8 mg/ml membrane protein was preincu-

bated with 9.0 nM AM-841 (a concentration of AM-841 previously shown for

each covalent ligand studied to inhibit [3H]-CP55940 binding to the WT

hCB2 receptor by at least 80% across a range of [3H]-CP55940 concentra-

tions). Membranes were allowed to equilibrate with 9.0 nM AM-841 for 1 hr

at 30�C with agitation and were then sedimented at 27 3 g, 30�C, and washed

3 times in TME containing 1% (w/v) BSA at 30�C. The membranes were

allowed to equilibrate at 30�C in buffer for 15 min between each wash. Two

final washes were then performed with BSA-free TME. Saturation-binding as-

says were then performed with the washed membranes and [3H]-CP55940 as

radioligand. The resultant data were analyzed as described above for at least

two independent experiments performed in duplicate.

cAMP Assay

cAMP was quantified as described elsewhere (Tao et al., 1999), with minor

modification. HEK293 cells expressing the hCB2 receptor were grown to

70% confluency under selection, as described above. Cells were harvested

by centrifugation at 500 3 g for 5 min and resuspended in DMEM containing

phosphodiesterase inhibitors (0.1 mM RO-20-1724 [Calbiochem, La Jolla,

CA] and 1 mM IBMX), 20 mM HEPES (pH 7.3), and 0.1% (w/v) BSA to a final

concentration of 1 3 106 cells/ml and incubated at 30�C for 30 min. Cells

(1 3 106 per assay) were then incubated with 5 mM forskolin (Fisher Scientific,

Pittsburgh, PA) and the appropriate test ligand at concentrations ranging from

0.01 to 10,000 nM for 5 min. Basal cAMP levels were determined from cells

incubated in the absence of forskolin and ligand. cAMP levels were also deter-

mined in control cells incubated with forskolin alone. Reactions were stopped

by boiling for 5 min and then immediately lysing the cells by rapid freeze-thaw.

Lysates were centrifuged at 12,000 3 g for 5 min to pellet cellular debris. cAMP
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was determined in the supernatants with a radiochemical competitive-binding

assay (Diagnostic Products Corporation, Los Angeles, CA). Each cAMP

determination was made at least three independent times, each in triplicate.

IC50 values for inhibition of net forskolin-induced cAMP production (above

basal) were determined by nonlinear regression (GraphPad Prism).

Molecular Modeling of the hCB2 Receptor

A TMH model of the hCB2 R receptor was created with the 2.8 Å crystal

structure of bovine Rho (Palczewski et al., 2000) as the starting point. The

sequences of the hCB2 receptor (Munro et al., 1993) and bovine Rho were

aligned using the same highly conserved residues as guides that had been

employed to generate our initial CB1-receptor model (Bramblett et al.,

1995). Helix ends for Rho and the hCB2 receptor were considered analogous

(Palczewski et al., 2000). Changes from the general Rho structure necessitated

by sequence differences were then imposed. For example, the absence of he-

lix-kinking proline residues in TMH1 and TMH5 necessitated modeling these

as normal alpha helices. We recently showed that the conformation of TMH2

diverges between Rho and the hCB2 receptor and changes with time due to

the absence of the Rho GGXTT motif in TMH2 of the hCB2 receptor. It was

found that in the hCB2 receptor, S2.54(84) in a g- (+60o) c1 can form an

intrahelical hydrogen bond that induces a deviation from normal a-helicity by

causing both a bend and a change in wobble angle and face shift in TMH2

of the hCB2 receptor. The result, a decrease in the number of residues per

turn above S2.54(84), tightens the helix and alters the placement of residue

C2.59(89) from one facing lipid in Rho to a position in the TMH2-3 interface,

allowing it to react with the substituted cysteine accessibility method reagent

MTSEA (Zhang et al., 2005).

A TMH model of the hCB2 R* receptor was created by modifying our Rho-

based hCB2 R model (Zhang et al., 2005). R* model construction was guided

by the biophysical literature on the R to R* transition in Rho and the b-2-adren-

ergic and muscarinic M3 receptors. The literature indicates that: a salt bridge

between R3.50 and E/D6.30 at its intracellular end stabilizes the R receptor

(Ballesteros and Weinstein, 1995); a conformational change in TMH6 occurs

upon activation (Farrens et al., 1996; Jensen et al., 2001) mediated by the

straightening of the CWXP flexible hinge region of TMH6 (Jensen et al.,

2001); and rotation of TMH3 (Lin and Sakmar, 1996) and TMH6 (Javitch

et al., 1997; Lin and Sakmar, 1996) occurs upon activation. The above exper-

imental findings were used to create the hCB2 R* model in the current study.

Specifically, the R* hCB2 TMH bundle was modeled from the R model of the

hCB2 receptor by rotating TMH3 so that residue 3.41(122) moves into the

less hydrophobic environment of the TMH3-4 interface (Lin and Sakmar,

1996). This was accomplished by a 20� counterclockwise (extracellular view)

rotation of TMH3 from its orientation in the inactive (R) bundle. A conformer

of TMH6 with a reduced bend (Barnett-Norris et al., 2002) was incorporated

into the bundle. TMH6 was also rotated (counterclockwise from extracellular

view) so that C6.47(257) became accessible from inside the binding site

crevice (Javitch et al., 1997).

Loop segments were added in stages to the resultant R* TMH bundle model

using MODELER v8.0 (Sali and Blundell, 1993). In each case, 1000 loop

conformations were generated. The objective function of MODELER was

used to rank conformations. The results were screened for the lowest energy

loop that did not produce steric interference with the ligand-binding pocket. In

all cases, this loop came from the first 50 low energy structures.

The EC3 conformation was identified by adding T(272) thru K(278) to the

model and then performing a conformational search of this range of residues

in MODELER. On the basis of the hypothesis of a salt bridge between K3.28

and D(275) (see Discussion), a single constraint was applied during the search:

the C gamma atom of D(275) was required to be within 4.0 Å of the NZ atom of

K3.28(109). One thousand loops were generated, and a structure, salt-bridged

with K3.28(109) but not overlapping sterically with the ligand binding pocket,

was incorporated into the computation.

EC1 was subsequently generated by adding F(97) thru K(103) to the

model and then performing a conformational search of this range of residues

in MODELER in the presence of EC3. The initial conformation for EC2 was

taken from our Biased Scaled Collective Variable in Monte Carlo study of the

EC2 (Barnett-Norris et al., 2003; Hassan et al., 2002). This loop has an internal

C4.66(174)-C179 disulfide bridge, one which has been suggested to be

present in the hCB2 receptor from mutagenesis studies (Gouldson et al.,
8 Elsevier Ltd All rights reserved
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2000). To allow the EC2 to adjust in the presence of EC1 and EC3, MODELER

was used to vary S(180) to N(188). The conformation of the smaller internal

loop (C4.66(174)-C179) was not varied. Intracellular loops (ICs) were gener-

ated using the same protocol, with IC3 added first.

Ligand Conformations and Docking Positions

Because AM-841 is a CB2-receptor agonist, it was docked in the CB2 R*

model. The binding-site conformation and anchoring interactions within the

receptor used for AM-841 were based on published computational and exper-

imental structure-activity studies. AM-841 was docked in the global minimum

energy conformation of its tricyclic hexahydrocannabinol ring system (Reggio

et al., 1993). Cysteine residues are the most likely candidates for reaction

with isothiocyanates (Tahtaoui et al., 2003), providing the rationale for interac-

tive docking studies to elucidate binding interactions for AM-841. The hCB2

receptor has five cysteine residues in its TMH domains at the level of the

ligand-binding pocket: C1.39(40), C2.59(89), C6.47(257), C7.38(284), and

C7.42(288). C1.39(40) orients into the binding pocket between TMH2 and

TMH7, but M7.40(286) sterically blocks this residue. C2.59(89) is located at

the TMH2-3 interface and is accessible to MTSEA (Zhang et al., 2005).

C7.38(284) is by one turn extracellular to C7.42(288). C6.47(257) is one turn

below the level of C7.42(288) and fairly deep within the binding pocket.

Upon activation of the b-2-adrenergic receptor, C6.47 becomes accessible

within the binding pocket (Javitch et al., 1997). According to our prior hCB2

receptor model (Zhang et al., 2005), C6.47 faces lipid in R and is located in

the TMH6–7 interface in R*. C7.38(284) and C7.42(288) are also located in

the TMH6–7 interface, with C7.42(288) more accessible to the ligand-binding

pocket.

Rhee (2002) has reported that the classical cannabinoid, HU-243, loses

affinity by over 10-fold in a S7.39A mutant, suggesting that S7.39 is important

for classical cannabinoid binding at the CB2 receptor. For this reason,

S7.39(285) was used as the primary interaction site for AM-841 in our hCB2

R* model. To identify possible sites of interaction of AM-841 in the hCB2

receptor, a covalent bond between the NCS-functionalized tail of AM-841

and each accessible candidate cysteine residue—C2.59(89), C6.47(257),

C7.38(284), and C7.42(288)—was first formed. Interactive computer graphics

revealed that only when AM-841 was covalently attached to C6.47(257) could

this ligand hydrogen-bond with S7.39(285). In this case, the CH2OH moiety of

the carbocyclic-ring of AM-841 was hydrogen-bonded with S7.39(285) to

establish an anchoring interaction. Further computer modeling demonstrated

that the phenolic hydroxyl of AM-841 could hydrogen-bond with S6.58(268)

while maintaining its interaction with S7.39(285) and covalent link with

C6.47(257). No interaction site for the pyran oxygen was identified in the

hCB2 receptor.

Energy Minimization

The OPLS_2005 all-atom force field in Macromodel 9.1 (Schrödinger LLC, NY,

USA) was used to minimize the energy of the full hCB2-receptor bundle-AM-

841 complex. An 8.0 Å extended nonbonded cutoff (updated every 10 steps),

20.0 Å electrostatic cutoff, and 4.0 Å hydrogen-bond cutoff were used in each

stage of the calculation. All residues except D2.50(80), K3.28(109), and D(275)

were neutralized during this initial minimization. C alpha atom restraints

(100 kcal/mol) for all C alpha atoms were applied, and the full bundle was

energy minimized until an energy gradient of 0.1 kcal/mol was reached.

The C alpha atom restraints were then reduced in steps to 50 kcal/mol,

10 kcal/mol, and 0 kcal/mol (no restraints) until an energy gradient of

0.1 kcal/mol was achieved at each step. To allow the loops to adjust in their

proper environment, atoms of the TMH regions were frozen, and the bundle

was re-minimized in water solvent to 0.1 kcal/mol gradient with loop residues

fully charged.
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